Physics for scientists and Engineers with modern physics 9th > 대학 교재

본문 바로가기
배경
검색창 열기
대학 교재

Physics for scientists and Engineers with modern physics 9th

본문

목차

part 1 Mechanics 1 

1 Physics and Measurement 2 

1.1 Standards of Length, Mass, and Time 3 

1.2 Matter and Model Building 6 

1.3 Dimensional Analysis 7 

1.4 Conversion of Units 9 

1.5 Estimates and Order-of-Magnitude Calculations 10 

1.6 Significant Figures 11 


2 Motion in One Dimension 21 

2.1 Position, Velocity, and Speed 22 

2.2 Instantaneous Velocity and Speed 25 

2.3 Analysis Model: Particle Under Constant Velocity 28 

2.4 Acceleration 31 

2.5 Motion Diagrams 35 

2.6 Analysis Model: Particle Under Constant Acceleration 36 

2.7 Freely Falling Objects 40 

2.8 Kinematic Equations Derived from Calculus 43 


3 Vectors 59 

3.1 Coordinate Systems 59 

3.2 Vector and Scalar Quantities 61 

3.3 Some Properties of Vectors 62 

3.4 Components of a Vector and Unit Vectors 65 


4 Motion in Two Dimensions 78 

4.1 The Position, Velocity, and Acceleration Vectors 78 

4.2 Two-Dimensional Motion with Constant Acceleration 81 

4.3 Projectile Motion 84 

4.4 Analysis Model: Particle in Uniform Circular Motion 91 

4.5 Tangential and Radial Acceleration 94 

4.6 Relative Velocity and Relative Acceleration 96 


5 The Laws of Motion 111 

5.1 The Concept of Force 111 

5.2 Newton’s First Law and Inertial Frames 113 

5.3 Mass 114 

5.4 Newton’s Second Law 115 

5.5 The Gravitational Force and Weight 117 

5.6 Newton’s Third Law 118 

5.7 Analysis Models Using Newton’s Second Law 120 

5.8 Forces of Friction 130 


6 Circular Motion and Other Applications of Newton’s Laws 150 

6.1 Extending the Particle in Uniform Circular Motion Model 150 

6.2 Nonuniform Circular Motion 156 

6.3 Motion in Accelerated Frames 158 

6.4 Motion in the Presence of Resistive Forces 161 


7 Energy of a System 177 

7.1 Systems and Environments 178 

7.2 Work Done by a Constant Force 178 

7.3 The Scalar Product of Two Vectors 181 

7.4 Work Done by a Varying Force 183 

7.5 Kinetic Energy and the Work–Kinetic Energy Theorem 188 

7.6 Potential Energy of a System 191 

7.7 Conservative and Nonconservative Forces 196 

7.8 Relationship Between Conservative Force sand Potential Energy 198 

7.9 Energy Diagrams and Equilibrium of a System 199 


8 Conservation of Energy 211 

8.1 Analysis Model: Nonisolated System (Energy) 212 

8.2 Analysis Model: Isolated System (Energy) 215 

8.3 Situations Involving Kinetic Friction 222 

8.4 Changes in Mechanical Energy for Nonconservative Forces 227 

8.5 Power 232 


9 Linear Momentum and Collisions 247 

9.1 Linear Momentum 247 

9.2 Analysis Model: Isolated System (Momentum) 250 

9.3 Analysis Model: Nonisolated System (Momentum) 252 

9.4 Collisions in One Dimension 256 

9.5 Collisions in Two Dimensions 264 

9.6 The Center of Mass 267 

9.7 Systems of Many Particles 272 

9.8 Deformable Systems 275 

9.9 Rocket Propulsion 277 


10 Rotation of a Rigid Object About a Fixed Axis 293 

10.1 Angular Position, Velocity, and Acceleration 293 

10.2 Analysis Model: Rigid Object Under Constant Angular Acceleration 296 

10.3 Angular and Translational Quantities 298 

10.4 Torque 300 

10.5 Analysis Model: Rigid Object Under a Net Torque 302 

10.6 Calculation of Moments of Inertia 307 

10.7 Rotational Kinetic Energy 311 

10.8 Energy Considerations in Rotational Motion 312 

10.9 Rolling Motion of a Rigid Object 316 


11 Angular Momentum 335 

11.1 The Vector Product and Torque 335 

11.2 Analysis Model: Nonisolated System (Angular Momentum) 338 

11.3 Angular Momentum of a Rotating Rigid Object 342 

11.4 Analysis Model: Isolated System (Angular Momentum) 345 

11.5 The Motion of Gyroscopes and Tops 350 


12 Static Equilibrium and Elasticity 363 

12.1 Analysis Model: Rigid Object in Equilibrium 363 

12.2 More on the Center of Gravity 365 

12.3 Examples of Rigid Objects in Static Equilibrium 366 

12.4 Elastic Properties of Solids 373 


13 Universal Gravitation 388 

13.1 Newton’s Law of Universal Gravitation 389 

13.2 Free-Fall Acceleration and the Gravitational Force 391 

13.3 Analysis Model: Particle in a Field (Gravitational) 392 

13.4 Kepler’s Laws and the Motion of Planets 394 

13.5 Gravitational Potential Energy 400 

13.6 Energy Considerations in Planetary and Satellite Motion 402 


14 Fluid Mechanics 417 

14.1 Pressure 417 

14.2 Variation of Pressure with Depth 419 

14.3 Pressure Measurements 423 

14.4 Buoyant Forces and Archimedes’s Principle 423 

14.5 Fluid Dynamics 427 

14.6 Bernoulli’s Equation 430 

14.7 Other Applications of Fluid Dynamics 433 



part 2 Oscillations and Mechanical Waves 449 

15 Oscillatory Motion 450 

15.1 Motion of an Object Attached to a Spring 450 

15.2 Analysis Model: Particle in Simple Harmonic Motion 452 

15.3 Energy of the Simple Harmonic Oscillator 458 

15.4 Comparing Simple Harmonic Motion with Uniform Circular Motion 462 

15.5 The Pendulum 464 

15.6 Damped Oscillations 468 

15.7 Forced Oscillations 469 


16 Wave Motion 483 

16.1 Propagation of a Disturbance 484 

16.2 Analysis Model: Traveling Wave 487 

16.3 The Speed of Waves on Strings 491 

16.4 Reflection and Transmission 494 

16.5 Rate of Energy Transfer by Sinusoidal Waves on Strings 495 

16.6 The Linear Wave Equation 497 


17 Sound Waves 507 

17.1 Pressure Variations in Sound Waves 508 

17.2 Speed of Sound Waves 510 

17.3 Intensity of Periodic Sound Waves 512 

17.4 The Doppler Effect 517 


18 Superposition and Standing Waves 533 

18.1 Analysis Model: Waves in Interference 534 

18.2 Standing Waves 538 

18.3 Analysis Model: Waves Under Boundary Conditions 541 

18.4 Resonance 546 

18.5 Standing Waves in Air Columns 546 

18.6 Standing Waves in Rods and Membranes 550 

18.7 Beats: Interference in Time 550 

18.8 Nonsinusoidal Wave Patterns 553 



part 3 Thermodynamics 567 

19 Temperature 568 

19.1 Temperature and the Zeroth Law of Thermodynamics 568 

19.2 Thermometers and the Celsius Temperature Scale 570 

19.3 The Constant-Volume Gas Thermometer and the Absolute Temperature Scale 571 

19.4 Thermal Expansion of Solids and Liquids 573 

19.5 Macroscopic Description of an Ideal Gas 578 


20 The First Law of Thermodynamics 590 

20.1 Heat and Internal Energy 590 

20.2 Specific Heat and Calorimetry 593 

20.3 Latent Heat 597 

20.4 Work and Heat in Thermodynamic Processes 601 

20.5 The First Law of Thermodynamics 603 

20.6 Some Applications of the First Law of Thermodynamics 604 

20.7 Energy Transfer Mechanisms in Thermal Processes 608 


21 The Kinetic Theory of Gases 626 

21.1 Molecular Model of an Ideal Gas 627 

21.2 Molar Specific Heat of an Ideal Gas 631 

21.3 The Equipartition of Energy 635 

21.4 Adiabatic Processes for an Ideal Gas 637 

21.5 Distribution of Molecular Speeds 639 


22 Heat Engines, Entropy, and the Second Law of Thermodynamics 653 

22.1 Heat Engines and the Second Law of Thermodynamics 654 

22.2 Heat Pumps and Refrigerators 656 

22.3 Reversible and Irreversible Processes 659 

22.4 The Carnot Engine 660 

22.5 Gasoline and Diesel Engines 665 

22.6 Entropy 667 

22.7 Changes in Entropy for Thermodynamic Systems 671 

22.8 Entropy and the Second Law 676 



part 4 Electricity and Magnetism 689 

23 Electric Fields 690 

23.1 Properties of Electric Charges 690 

23.2 Charging Objects by Induction 692 

23.3 Coulomb’s Law 694 

23.4 Analysis Model: Particle in a Field (Electric) 699 

23.5 Electric Field of a Continuous Charge Distribution 704 

23.6 Electric Field Lines 708 

23.7 Motion of a Charged Particle in a Uniform Electric Field 710 


24 Gauss’s Law 725 

24.1 Electric Flux 725 

24.2 Gauss’s Law 728 

24.3 Application of Gauss’s Law to Various Charge Distributions 731 

24.4 Conductors in Electrostatic Equilibrium 735 


25 Electric Potential 746 

25.1 Electric Potential and Potential Difference 746 

25.2 Potential Difference in a Uniform Electric Field 748 

25.3 Electric Potential and Potential Energy Due to Point Charges 752 

25.4 Obtaining the Value of the Electric Field from the Electric Potential 755 

25.5 Electric Potential Due to Continuous Charge Distributions 756 

25.6 Electric Potential Due to a Charged Conductor 761 

25.7 The Millikan Oil-Drop Experiment 764 

25.8 Applications of Electrostatics 765 


26 Capacitance and Dielectrics 777 

26.1 Definition of Capacitance 777 

26.2 Calculating Capacitance 779 

26.3 Combinations of Capacitors 782 

26.4 Energy Stored in a Charged Capacitor 786 

26.5 Capacitors with Dielectrics 790 

26.6 Electric Dipole in an Electric Field 793 

26.7 An Atomic Description of Dielectrics 795 


27 Current and Resistance 808 

27.1 Electric Current 808 

27.2 Resistance 811 

27.3 A Model for Electrical Conduction 816 

27.4 Resistance and Temperature 819 

27.5 Superconductors 819 

27.6 Electrical Power 820 


28 Direct-Current Circuits 833 

28.1 Electromotive Force 833 

28.2 Resistors in Series and Parallel 836 

28.3 Kirchhoff’s Rules 843 

28.4 RC Circuits 846 

28.5 Household Wiring and Electrical Safety 852 


29 Magnetic Fields 868 

29.1 Analysis Model: Particle in a Field (Magnetic) 869 

29.2 Motion of a Charged Particle in a Uniform Magnetic Field 874 

29.3 Applications Involving Charged Particles Moving in a Magnetic Field 879 

29.4 Magnetic Force Acting on a Current-Carrying Conductor 882 

29.5 Torque on a Current Loop in a Uniform Magnetic Field 885 

29.6 The Hall Effect 890 


30 Sources of the Magnetic Field 904 

30.1 The Biot–Savart Law 904 

30.2 The Magnetic Force Between Two Parallel Conductors 909 

30.3 Ampère’s Law 911 

30.4 The Magnetic Field of a Solenoid 915 

30.5 Gauss’s Law in Magnetism 916 

30.6 Magnetism in Matter 919 


31 Faraday’s Law 935 

31.1 Faraday’s Law of Induction 935 

31.2 Motional emf 939 

31.3 Lenz’s Law 944 

31.4 Induced emf and Electric Fields 947 

31.5 Generators and Motors 949 

31.6 Eddy Currents 953 


32 Inductance 970 

32.1 Self-Induction and Inductance 970 

32.2 RL Circuits 972 

32.3 Energy in a Magnetic Field 976 

32.4 Mutual Inductance 978 

32.5 Oscillations in an LC Circuit 980 

32.6 The RLC Circuit 984 


33 Alternating-Current Circuits 998 

33.1 AC Sources 998 

33.2 Resistors in an AC Circuit 999 

33.3 Inductors in an AC Circuit 1002 

33.4 Capacitors in an AC Circuit 1004 

33.5 The RLC Series Circuit 1007 

33.6 Power in an AC Circuit 1011 

33.7 Resonance in a Series RLC Circuit 1013 

33.8 The Transformer and Power Transmission 1015 

33.9 Rectifiers and Filters 1018 


34 Electromagnetic Waves 1030 

34.1 Displacement Current and the General Form of Ampère’s Law 1031 

34.2 Maxwell’s Equations and Hertz’s Discoveries 1033 

34.3 Plane Electromagnetic Waves 1035 

34.4 Energy Carried by Electromagnetic Waves 1039 

34.5 Momentum and Radiation Pressure 1042 

34.6 Production of Electromagnetic Waves by an Antenna 1044 

34.7 The Spectrum of Electromagnetic Waves 1045 



part 5 Light and Optics 1057 

35 The Nature of Light and the Principles of Ray Optics 1058 

35.1 The Nature of Light 1058 

35.2 Measurements of the Speed of Light 1059 

35.3 The Ray Approximation in Ray Optics 1061 

35.4 Analysis Model: Wave Under Reflection 1061 

35.5 Analysis Model: Wave Under Refraction 1065 

35.6 Huygens’s Principle 1071 

35.7 Dispersion 1072 

35.8 Total Internal Reflection 1074 


36 Image Formation 1090 

36.1 Images Formed by Flat Mirrors 1090 

36.2 Images Formed by Spherical Mirrors 1093 

36.3 Images Formed by Refraction 1100 

36.4 Images Formed by Thin Lenses 1104 

36.5 Lens Aberrations 1112 

36.6 The Camera 1113 

36.7 The Eye 1115 

36.8 The Simple Magnifier 1118 

36.9 The Compound Microscope 1119 

36.10 The Telescope 1120 


37 Wave Optics 1134 

37.1 Young’s Double-Slit Experiment 1134 

37.2 Analysis Model: Waves in Interference 1137 

37.3 Intensity Distribution of the Double-Slit Interference Pattern 1140 

37.4 Change of Phase Due to Reflection 1143 

37.5 Interference in Thin Films 1144 

37.6 The Michelson Interferometer 1147 


38 Diffraction Patterns and Polarization 1160 

38.1 Introduction to Diffraction Patterns 1160 

38.2 Diffraction Patterns from Narrow Slits 1161 

38.3 Resolution of Single-Slit and Circular Apertures 1166 

38.4 The Diffraction Grating 1169 

38.5 Diffraction of X-Rays by Crystals 1174 

38.6 Polarization of Light Waves 1175 



part 6 Modern Physics 1191 

39 Relativity 1192 

39.1 The Principle of Galilean Relativity 1193 

39.2 The Michelson–Morley Experiment 1196 

39.3 Einstein’s Principle of Relativity 1198 

39.4 Consequences of the Special Theory of Relativity 1199 

39.5 The Lorentz Transformation Equations 1210 

39.6 The Lorentz Velocity Transformation Equations 1212 

39.7 Relativistic Linear Momentum 1214 

39.8 Relativistic Energy 1216 

39.9 The General Theory of Relativity 1220 


40 Introduction to Quantum Physics 1233 

40.1 Blackbody Radiation and Planck’s Hypothesis 1234 

40.2 The Photoelectric Effect 1240 

40.3 The Compton Effect 1246 

40.4 The Nature of Electromagnetic Waves 1249 

40.5 The Wave Properties of Particles 1249 

40.6 A New Model: The Quantum Particle 1252 

40.7 The Double-Slit Experiment Revisited 1255 

40.8 The Uncertainty Principle 1256 


41 Quantum Mechanics 1267 

41.1 The Wave Function 1267 

41.2 Analysis Model: Quantum Particle Under Boundary Conditions 1271 

41.3 The Schrödinger Equation 1277 

41.4 A Particle in a Well of Finite Height 1279 

41.5 Tunneling Through a Potential Energy Barrier 1281 

41.6 Applications of Tunneling 1282 

41.7 The Simple Harmonic Oscillator 1286 


42 Atomic Physics 1296 

42.1 Atomic Spectra of Gases 1297 

42.2 Early Models of the Atom 1299 

42.3 Bohr’s Model of the Hydrogen Atom 1300 

42.4 The Quantum Model of the Hydrogen Atom 1306 

42.5 The Wave Functions for Hydrogen 1308 

42.6 Physical Interpretation of the Quantum Numbers 1311 

42.7 The Exclusion Principle and the Periodic Table 1318 

42.8 More on Atomic Spectra: Visible and X-Ray 1322 

42.9 Spontaneous and Stimulated Transitions 1325 

42.10 Lasers 1326 


43 Molecules and Solids 1340 

43.1 Molecular Bonds 1341 

43.2 Energy States and Spectra of Molecules 1344 

43.3 Bonding in Solids 1352 

43.4 Free-Electron Theory of Metals 1355 

43.5 Band Theory of Solids 1359 

43.6 Electrical Conduction in Metals, Insulators,and Semiconductors 1361 

43.7 Semiconductor Devices 1364 

43.8 Superconductivity 1370 


44 Nuclear Structure 1380 

44.1 Some Properties of Nuclei 1381 

44.2 Nuclear Binding Energy 1386 

44.3 Nuclear Models 1387 

44.4 Radioactivity 1390 

44.5 The Decay Processes 1394 

44.6 Natural Radioactivity 1404 

44.7 Nuclear Reactions 1405 

44.8 Nuclear Magnetic Resonance and Magnetic Resonance Imaging 1406 


45 Applications of Nuclear Physics 1418 

45.1 Interactions Involving Neutrons 1418

45.2 Nuclear Fission 1419 

45.3 Nuclear Reactors 1421 

45.4 Nuclear Fusion 1425 

45.5 Radiation Damage 1432 

45.6 Uses of Radiation 1434 


46 Particle Physics and Cosmology 1447 

46.1 The Fundamental Forces in Nature 1448 

46.2 Positrons and Other Antiparticles 1449 

46.3 Mesons and the Beginning of Particle Physics 1451 

46.4 Classification of Particles 1454 

46.5 Conservation Laws 1455 

46.6 Strange Particles and Strangeness 1459 

46.7 Finding Patterns in the Particles 1460 

46.8 Quarks 1462 46.9 Multicolored Quarks 1465 

46.10 The Standard Model 1467 

46.11 The Cosmic Connection 1469 

46.12 Problems and Perspectives 1474 


Appendices